- A
ey

a1,
“
4
y . b
A
)
-w
3
|

o
2

S

- a V'
vl
P

R

> . o) > o -
U 88 e e <4
v s A
Sphly 7 oy
- & '
4
A »




© Lecture outline

1. Principle of Compositionality
2. Context Free Grammar

3. CKY Parsing

4. Parsing by TreeRNNs

.

Parsing by Pre-trained LM
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https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/
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© Semantic Interpretation of Language

® How can we interpret the meaning of larger phrases”

The snowboarder 1s leaping over a mogul

A person on a snowboard jJumps 1nto the air

® People interpret the meaning of larger text units — entities, descriptive terms,
facts, arguments, stories — by semantic composition of smaller elements




Lanquage understanding -

& Artificial Intelligence - requires
being able ko understand bigqer
things from lcmowing about smaller

parts

V4 https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194



© The Nature of Language

@ Natural language 1s flexible, compositional, hierarchical

Sentence A:
The brown mouse is being chased by the blue cat.

Sentence B:
The blue cat is chasing the brown mouse.

— T

The blue cat is chasing the brown mouse.

AR

The blue cat is chasing the brown mouse.




I LI LN

Context Free
Grammar



Can we define a program that generates all English
sentences?

The number of sentences iIs infinite.
But we need our program to be finite.



(11, Overgeneration

John Mary saw.

English

with tuna sushi ate I.

Did you went there?
John saw Mary.

I ate sushi with tuna.

I want you to go there.

¥ you go there?

I ate the cake that John had
made for me yesterday

John made some cake.

Undergeneration

CS447: Natural Language Processing (J. Hockenmaier)



@® Basic sentence structure

oDt

(&

Noun Noun
: I Verb :
(SUbleCt) (Head) (ObjeCt)




® This is a dependency graph

sbj obj

/AR

I eat sushi.

sbj €atl obj

v\

| sushi




@ Language is recursive

the ball
the big ball

the big, red ball
the big, red, heavy ball

Adjectives can modify nouns.
The number of modifiers (aka adjuncts)
a word can have is (in theory) unlimited.



® Recursion can be more complex

the ball
the ball in the garden
the ball in the garden behind the house
the ball in the garden behind the house next to the school



@ What does this mean?

the ball

In the garden

behind

the house

Thereis an |

| ambiguity

attachment




@ What is the structure of a sentence?

Sentence structure is hierarchical:

A sentence consists of words (I, eat, sushi, with, tuna)
..which form phrases or constituents: “sushi with tuna’

Sentence structure defines dependencies
between words or phrases:

YV,

[I[ eat[ sushi [with tuna]l]] ]



@ Context-free grammars (CFGs) capture recursion

Language has complex constituents
(“the garden behind the house”)

Syntactically, these constituents behave

just like simple ones.
(“behind the house” can always be omitted)

CFGs define nonterminal categories
to capture equivalent constituents.



® Context-free grammars

A CFG is a 4-tuple (N, X, R, S) consisting of:
A set of nonterminals N
(e.g. N ={S, NP, VP, PP, Noun, Verb, ....})

A set of terminals X
(e.g. X ={l, you, he, eat, drink, sushi, ball, })

A set of rules R
R ¢ {A — [ with left-hand-side (LHS) A&N
and right-hand-side (RHS) p € (N U X)* }

A start symbol S € N



@ An example

DT — {the, a}

N — {ball, garden, house, sushi }
P — {in, behind, with}

NP — DTN

NP — NP PP

PP —- P NP

N: noun

P: preposition

NP: “noun phrase”

PP: “prepositional phrase”



@ An example

{the, a}| terminal symbols

lexicon N — {ball, garden, house, sushi }
P — {in, behind, with}

other
rules

N: noun

P: preposition

NP: “noun phrase”

PP: “prepositional phrase”

DT: Determiner



® Context-free or not?

S -> BBB S -> AB
B AB -> 1
A -> AA

B -> 1 B - 0



& Answer

S -> BBB S -> AB
B -> 9 AB -> 1

A -> AA
B -> 1 3 -5 B

Context-Free Not Context-Free



@ CFGs define parse trees

N — {sushi, tuna}

P — {with} VP__

V — {eat} / NP

NP — N v NP/ " NP
NP — NP PP eat sushi  with tuna
PP—-P NP

VP =- V NP



® Two Most Common of Linguistic Tree Structures

Dependency Trees focus on relations between words
ROOT

/\\A\/\

a girl with a telescope

Phrase Structure models the structure of a sentence

2 \p
/% T
- / NP
PRP VBD DT NN NN

| 1 oo 1 l |

| saw a girl with a telescope



@ Dependency grammar

D@Gs describe the structure of sentences as a

directed acyclic graph.
The nodes of the graph are the words
The edges of the graph are the dependencies.

Typically, the graph is assumed to be a tree.

Note: the relationship between DG and CFGs:

If a CFG phrase structure tree is translated into DG,
the resulting dependency graph has no crossing edges.



@ Constituents: heads and dependents

There are different kinds of constituents:

Noun phrases: the man, a girl with glasses, lllinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly

Every phrase has a head.

Noun phrases: the man, a girl with glasses, lllinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly

The other parts are its dependents.
Dependents are either arguments or adjuncts




@ Is string a a constituent?

He talks [1n class].

Substitution test:

Can a be replaced by a single word?
He talks [there].

Movement test:
Can a be moved around in the sentence?
[In class], he talks.

Answer test:
Can a be the answer to a question?
Where does he talk? - [In class].



©® Arguments are obligatory

Words subcategorize for specific sets of arguments:
Transitive verbs (sbj + obj): [John] likes [Mary]

All arguments have to be present:
*|John] likes.  *likes [Mary].

No argument can be occupied multiple times:
*|John] [Peter] likes [Ann] [Mary].

Words can have multiple subcat frames:
Transitive eat (sbj + obj): [John] eats [sushi].
Intransitive eat (sbj): [John] eats.



© Adjuncts are optional

Adverbs, PPs and adjectives can be adjuncts:

Adverbs: John runs [fast].
a [very] heavy book.
PPs: John runs [in the gym].

the book [on the table]
Adjectives: a [heavy] book

There can be an arbitrary number of adjuncts:
John saw Mary.
John saw Mary |[yesterday].

John saw Mary [yesterday] [in town]
John saw Mary [yesterday] [in town] [during lunch]

| Perhaps] John saw Mary [yesterday] [in town] [during lunch]



A context-free grammar
for a fragment of
English



© Noun phrases (NPs)

Simple NPs:
[He] sleeps. (pronoun)
[John] sleeps. (proper name)

[A student] sleeps. (determiner + noun)

Complex NPs:

[A tall student] sleeps. (det + adj + noun)
[The student in the back] sleeps. (NP + PP)

[The student who likes MTV] sleeps. (NP + Relative Clause)



© The NP fragment

NP — Pronoun

NP — ProperName
NP — Det Noun

Det — {a, the, every}

Pronoun — {he, she,...}
ProperName — {John, Mary,...}
Noun — AdjP Noun

Noun — N

NP — NP PP

NP — NP RelClause



@ Adjective phrases (AdjP) and prepositional phrases (PP)

AdjP — Ad]

AdjP — Adv AdjP

Adj — {big, small, red,...}
Adv — {very, really,...}

PP — P NP
P — {with, in, above,...}



©® The verb phrase (VP)

He [eats].
He [eats sushi].
He [gives John sushi].

He [eats sushi with chopsticks].

VP = V
VP = V NP
VP — V NP PP
VP — VP PP

V — {eats, sleeps gives,...}



€& Sentences

| He eats sushi].
|Sometimes, he eats sushi].
| In Japan, he eats sushi].

S - NP VP
S - AdvP S
S—-PPS

He says [ he eats sushi].
VP = Vcomp S
Vcomp — {says, think, believes}



@ Coordination

|He eats sushi] and [she drinks tea]

[John] and [ Mary] eat sushi.
He [eats sushi] and [drinks tea]

S —»SconS
NP — NP conj NP
VP — VP conj VP

He says [he eats sushi].
VP = Veomp S
Veomp — {Ssays, think, believes}



@ Relative clauses

Relative clauses modify a noun phrase:
the girl [that eats sushi]

There are subject and object relative clauses:

subject: ‘the girl that eats sushi’
object: ‘the sushi that the girl eats’



© Yes/No questions

Yes/no questions consist of an auxiliary, a subject
and an (untensed) verb phrase:

does she eat sushi?
have you eaten sushi?

YesNoQ — Aux NP VPin
YeSNOQ — AUX NP VPpastPart



® Wh-questions

Subject wh-questions consist of an wh-word, an
auxiliary and an (untensed) verb phrase:

Who has eaten the sushi?

Object wh-questions consist of an wh-word, an
auxiliary, an NP and an (untensed) verb phrase:

What does Mary eat?



@® More Details

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2020. All
rights reserved. Draft of December 30, 2020.

CHAPTER

1 2 Constituency Grammars

https://web.stanford.edu/~jurafsky/slp3/12.pdf



https://web.stanford.edu/~jurafsky/slp3/12.pdf

CKY Parsing
Algorithm




® Constituency Parsing

® Syntactic parsing is the task of assigning a syntactic structure to a sentence.

@ Constituency parsing assigns constituency structures, those assigned by
context-free grammars.

® Parse trees can be used in applications such as grammar checking, semantic
analysis, applications like question answering, etc.

NP VP
Pronoun VP PP
/"\\\
- .
I shot an elephant in my pajamas I Verb NP in my pajamas

A

shot Det Nominal

an Noun

elephant



@ Ambiguity

® Ambiguity is the most serious problem faced by syntactic parsers.

@ Structural ambiguity occurs when the grammar can assign more than one
parse 1o a sentence.

S S
e T T
NP \VP NP VP
Pronoun Verb NP Pronoun
TN A /\
I shot Det Nominal I Verb in my pajamas
/\ /\
an Nominal PP shot Det Nominal
T |
Noun inmy pajam> an  Noun

elephant elephant



@ Cocke-Kasami-Younger (CKY) Parsing

Bottom-up parsing:
start with the words
Dynamic programming:
save the results in a table/chart
re-use these results in finding larger constituents

Complexity: O( n3|G| )
n: length of string, |G|: size of grammar)

Presumes a CFG in Chomsky Normal Form:

Rules are all either A= BC orA— a
(with A,B,C nonterminals and a a terminal)



The CKY parsing algorithm

To recover the
parse tree, each
entry needs
pairs of
backpointers.

S > NPVP
VP —- V NP
V - eat
NP — we
NP — sushi

We eat sushi



® CKY algorithm

1. Create the chart
(an nxn upper triangular matrix for an sentence with n words)

— Each cell chart[i][j] corresponds to the substring w... w0
2. Initialize the chart (fill the diagonal cells chart[i][1]):

For all rules X = w®, add an entry X to chart[1][i]

3. Fill in the chart:

Fill in all cells chart[i][i+1], then chart[1][1+2], ...,
until you reach chart[1][n] (the top right corner of the chart)

— To fill chart[i][j], consider all binary splits wi.. . wk|wk+D)  w)
— If the grammar has a rule X = Y/Z, chart[i][k] contains a Y

and chart[k+1][j] contains a Z, add an X to chart[i][j] with two
backpointers to the Y in chart[i][k] and the Z in chart[k+1][j]

4. Extract the parse trees from the S in chart[1][n].



® CKY: filling the chart




® Converting a Generic CFG into CNF

® The CKY algorithm requires grammars to first be in Chomsky Normal Form

(CNF).

21 Grammar 21 in CNF

S — NPVP S — NPVP

S = Aux NP VP S — XIVP
X! — Aux NP

S — VP S — book | include | prefer
S — Verb NP
S — X2 PP
S — Verb PP
S — VPPP

NP — Pronoun

NP — Proper-Noun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP
vP — VP PP
PP — Preposition NP

NP — I| she| me

NP — TWA | Houston

NP — Det Nominal

Nominal — book | flight | meal | money
Nominal — Nominal Noun
Nominal — Nominal PP

VP — book | include | prefer
VP — Verb NP

VP — X2 PP

X2 — Verb NP

VP — Verb PP

vP — VP PP

PP — Preposition NP

DTN RR] ¥ Grammar and its conversion to CNFE. Note that although they aren’t shown
here, all the original lexical entries from % carry over unchanged as well.

https://web.stanford.edu/~jurafsky/slp3/13.pdf



https://web.stanford.edu/~jurafsky/slp3/13.pdf

@ Indexing Scheme

® With grammar in CNF, each non-ter

®
®

o Book 1 that 2

fenceposts

Jse a (n+1) * (n+1) matrix to encode the structure of a tree
1, || represents a constituent between tencepost | and |

flight 3

minal node have exactly two daughters

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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@ A Completed Parse Table

@ Proceed in a bottom—up Book the fight ~ through Houston
fashion fn'o \él:r.\;llfarbl S VP.X2 SVPX2
l'::;n [0.2] [0,3] [0.4] [0,5]
, R NP NP
® I'his scheme guarantees
that at each point in time R e T
we have all the Noun
information we need (to pa  lea s
the left, since all the A
columns to the left have B4 |ps)
already been filled, and Pioper
oelow since we're filling -
oottom to top). -

10Ty W RRY  Completed parse table for Book the flight through Houston.

https://web.stanford.edu/~jurafsky/slp3/13.pdf



https://web.stanford.edu/~jurafsky/slp3/13.pdf

@ Fill the [i, j]-th Cell in the CKY Table

® Since each non-terminal entry in
our table has two daughters in the
parse, it follows that for each
constituent represented by an
entry [1, |], there must be a position
in the input, k, where it can be split
INnto two parts such that | < k < |.

® Given such a position k, the first
constituent [i,k] must lie to the left
of entry [i, || somewhere along row
, and the second entry [k, || must
le beneath it, along column |.

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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@ Fill Column 5

® Each non-terminal is paired with pointers to the table entries from which it was derived

® Permit multiple versions of the same non-terminals to be entered into the table

Book the flight through  Houston
S, VP, Verb| S,VPX2
Nominal,
Noun
[0,1] [0,2] [0,3] [0.4] [0,9]
Det NP
[1,2] [1,3] [1.4] [1,5]
- L7 Lol
Nominal, Nominal
Noun
2,3 24 2.5
Prep
[3.4] [3,5]
NP,
Proper-
Noun
45

https://web.stanford.edu/~jurafsky/slp3/13.pdf



https://web.stanford.edu/~jurafsky/slp3/13.pdf

@ Fill Column 5

Book the flight through  Houston
S, VP, Verb | S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
Det NP NP
1,2] [1,3] [1,4] [1.5]
Nominal,
Noun
2,3 2.4 [2,5]

Prep <«<—— PP

[3,4]

[3,9] l

NP,
Proper-
Noun

45

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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@ Fill Column 5

Book the flight through  Houston
S, VP, Verb| S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
Det NP NP
1,2 13 14 1,5
Nominal, < Nominal
Noun
[2,3] [2,4] [2,9] ,;
Prep PP
[3.4] [3,3]
NP,
Proper-
Noun
[4,9]

https://web.stanford.edu/~jurafsky/slp3/13.pdf



https://web.stanford.edu/~jurafsky/slp3/13.pdf

@ Fill Column 5

Book the flight through  Houston
S, VP, Verb S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] |[0,5]
Del <«—1NP NP
1,2 1,3 1,4
Nominal, Nominal
Noun
[2,3] [2,4] [2,5]
Prep PP
[3,4] [3,5]
—
NP,
Proper-
Noun
[4,3]

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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@ Fill Column 5

Book the flight through  Houston
S, VP, Verb e S4,VP, X2
Nominal, S, |
Noun VP< S, VP
f623< l—-- S3
[0,1] [0,2] 3 [0,4]
Det NP NP
1,2 1,3 1,4 1,5 |
Nominal, Nomi'lal
Noun
[2,3] [2,4] [2,5] |
Prep PP
[3,4] [3,5]
NP,
Proper-
Noun
[4,5]

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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©® Evaluating Parsers

® The PARSEVAL metrics: measures how much the constituents in the hypothesis
parse tree look like the constituents in a hand-labeled, reference parse.

# of correct constituents 1n hypothesis parse of s
#of total constituents in reference parse of s

labeled recall: =

# of correct constituents 1in hypothesis parse of s
# of total constituents 1in hypothesis parse of s

labeled precision: =

As usual, we often report a combination of the two, Fi:

~ 2PR
~ P+R

F;

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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@ Penn Treebank

@ Treebank: a syntactically annotated corpus where every sentence in the collection
IS paired with a corresponding parse tree.

® A wide variety of treebanks
@ The Penn Treebank project

ave been created.
nas produced treebanks from the

ATIS, and Wall Street Journa
Chinese.

Brown, Switchboard,

corpora of English, as well as treebanks in Arabic and

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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® Penn Treebank

¢
(NP-SBJ (DT That)

(1) cold) ¢, ,)
(J]) empty) (NN sky) )
(VP (VBD was)
(ADJP-PRD (JJ full)
(PP (IN of)
(NP (NN fire)
(CC and)
(NN light) ))))
. )
(a)

(cs
(NP-SB] The/DT flight/NN )

(VP should/MD
(VP arrive/VB
(PP-TMP at/IN
(NP eleven/CD a.m/RB ))
(NP-TMP tomorrow/NN )))))

(b)

That cold

b4

—
e
—
—
i
—
e
B /
—
it )
e
e
—
e —
—

NN VBD

empty sky was

T —
—

-
—
—
—
—
—
~—
-—
—
-
—
-
——
—
——

ADJP-PRD

///A\\\
JJ PP

N
full N NP
‘ o //T\\\\.

of NN CC NN

fire and light

| IT MW Parsed sentences from the LDC Treebank3 version of the (a) Brown and (b) LHUSB¥E] The tree corresponding to the Brown corpus sentence in the previous figure.

ATIS corpora.

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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@ Span-Based Neural Constituency Parsing

@ CKY parsing does great at enumerating all the possible parse trees for a
sentence

@ But It doesn't tell us which parse Is the correct one!

@ Ihat Is, It doesn’t disambiguate among the possible parses

® 10 solve t

CKY

® The |
parsi
CONS

scores to fli

algorithm.

Ntuition of sL
Ng, Or neura

Ituent, and t

ch parsing a
CKY), isto't

nen use a modifi
nd the best-scoring parse tree.

gorithms (o

ralr

d neura

ed version of C

ten ca

classi

ne disambiguation problem we’ll use a simple neural extension of the

led span-based constituency
ler to assign a score to each

KY to combine these constituent
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® Building on Word Vector Space Models

AT

¢

9
¥ Monday [ 2 ]
¥ Tuesday 9.5]

1.5

France 5
2.5

3

or 1 2 4 5 6 7 8 9 10 X1

the country of my birth
the place where | was born

How can we represent the meaning of longer phrases?

By mapping them into the same vector space!

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



® How should we map phrases into a vector space?

Socher, Manning, and Ng. ICML,
Use principle of compositionality 2011

The meaning (vector) of a sentence
is determined by c
(1) the meanings of its words and
(2) the rules that combine them.

x the country of my birth
x the place where | was born

Models in this section
can jointly learn parse
trees and compositional
vector representations

0.4 : 7
0.3 :

the country  of my birth

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



® Constituency Sentence Parsing: What we want

(060 €

The cat sat the mat.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



® Learn Structure and Representation

() (] v
[]/\[] )L []/\[é‘]

The sat the mat.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



® Recursive vs. recurrent neural networks

e Recursive neural nets
require a tree structure

0.4
0.3

the

e Recurrent neural nets [35]—>[ ]—>[ ]——-)[ ]——)[ ]

cannot capture phrases

without prefix context [ ] [ ] [ ] [ ] [ ]
and often capture too much *
the country  of my birth

of last words in final vector

country

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



® Recursive NNs for Structure Prediction

Inputs: two candidate children’s representations

Outputs:

1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.

]

touel /\[ )
/\[

the mat.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



® Recursive Neural Network Definition

Neural

Network <

Same W parameters at all nodes
of the tree

oo s

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



@ Parsing a sentence with an RNN (greedily)

L) e ) G o ) L
A A A A

Neural Neural Neural Neural Neural
Network Network Network Network Network

H
w b
u

mat.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



@ Parsing a sentence

L (]
11

Neural

Network

0.1 [(2)] 0.4 [é] 2.3 :
I R I | [T]

[ g ] Neural Neural Neural
Network Network Network

00000

The cat sat

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



@ Parsing a sentence

1.1 ; 3.6 [2]
! [T] ]

Neural Neural
Network 2 Network
0.1 0

[
) el 8

3

) L)L []/\[]

The cat sat the mat.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



@® Parsing a sentence

[1 RO [,,,l.

cat sat on the

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



@ Score of a tree

e The score of a tree is computed by
the sum of the parsing decision
scores at each node:

s(t,y) = Y sn

nenodes(y)

* X ISsentence; yiIs parse tree

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



@© Max-Margin Framework

e Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

J = ZS x,,y, — IMax (S<xlay)+A(y7yl))
yEA(X;)

* Theloss A(y,y;) penalizes all incorrect decisions

e Structure search for A(x) was greedy (join best nodes each time)
* Instead: Beam search with chart

Max-margin parsing: https://www.aclweb.org/anthology/W04-3201.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



@ Backpropagation Through Structure

Introduced by Goller & Kuchler (1996) — old stuff!

Principally the same as general backpropagation

9,
oW ()

5 — ((W(l))T5(l+1)) o f' (2, Er = 6D (¢TI 4 xiw®

Calculations resulting from the recursion and tree structure:
1. Sum derivatives of W from all nodes (like RNN)

2. Split derivatives at each node (for tree)
3. Add error messages from parent + node itself

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/



@ Discussion: Simple TreeRNN

 Decent results with single layer TreeRNN

* Single weight matrix TreeRNN could capture some
phenomena but not adequate for more complex,
higher order composition and parsing long sentences

e There is no real interaction between the input words

» The composition function is the same weeere |
for all syntactic categories, punctuation, etc. SWN




@ TreeLSTM

https://www.aclweb.org/anthology/P15-1150.pdf

[Tai et al., ACL 2015; also Zhu et al. ICML 2015]

Goals:

e Still trying to represent the meaning of a sentence as a location
in a (high-dimensional, continuous) vector space

 |n a way that accurately handles semantic composition and
sentence meaning

e Generalizing the widely used chain-structured LSTM to trees



@ Child-Sum Tree-LSTMs

https://www.aclweb.org/anthology/P15-1150.pdf
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@ N-ary Tree-LSTMs

https://www.aclweb.org/anthology/P15-1150.pdf
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Parsing by
Pre-trained LM




CKY for computing best parse

Compute score for span

Represent span

g

NP

e e

postprocessing layers
map back to words

map to subwords

o

[START] Book

F F f 1 ¢

the  flight through Houston [END]

DT B RR] A simplified outline of computing the span score for the span the flight with

the label NP.
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https://web.stanford.edu/~jurafsky/slp3/13.pdf



https://web.stanford.edu/~jurafsky/slp3/13.pdf

® Calculating Span Score

® Map each word encoding to two span encodings

START Book the flight through
Yo )’5 §’1 Y1 )’1> §2 Y2 )’2) 3’3 Y3 )7"3 ﬁ Y4 )’i 3’5
O, ® @ 3 @
span(1,3)

® Represent a span by the difference between its start and end fenceposts
- — - =
V(l,J) — [)7}— Yi s Yj+1—Yi+1
@ Calculate span score by MLP

s(i, j,-) = W, ReLU(LayerNorm(W; v(i, j)))

https://web.stanford.edu/~jurafsky/slp3/13.pdf



https://web.stanford.edu/~jurafsky/slp3/13.pdf

® Integrating Span Scores into a Parse

@ Atree T is a set of spans ® A variant the CKY algorithm to find the
full parse.

T = {(ityjtylt) T = 1,,‘T|}

® Score of T Is the sum of its constituent !
spans
S i,j) = maxs(i,j,!
GBI Y) R
(i,4,1)eT + ml?'x[sbest(iak) +Sbest(k7 ])]

® Choose the final parse tree with the
maximum Score

T = argmaxs(T)
T

https://web.stanford.edu/~jurafsky/slp3/13.pdf



https://web.stanford.edu/~jurafsky/slp3/13.pdf

® More details on span-based parsing

@ Stern, M., Andreas, J., and Klein,

constituency parser. ACL.

@ Gaddy, D., Stern, M., and Klein,
constituency parsers? an analys

® Ki

el

® Kitaev, N., Cao, S., and Klein,
self-attention and pre-training. ACL.

coder. ACL.
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https://web.stanford.edu/~jurafsky/slp3/13.pdf



https://web.stanford.edu/~jurafsky/slp3/13.pdf

® Todo

@ Reading Assignment 9: Speech and Language Processing (3rd ed. draft),
Dan Jurafsky and James H. Martin, Chapter 12: Constituency Grammars Due:
April 10 23:59 pm, 2022
@ Suggested Readings:
® Constituency Parsing with a Self-Attentive Encoder
® Chapter 13: Constituency Parsing
® [he papers listed on the page "More details on span-based parsing’



https://web.stanford.edu/~jurafsky/slp3/12.pdf
https://arxiv.org/pdf/1805.01052.pdf
https://web.stanford.edu/~jurafsky/slp3/13.pdf
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Thanks! Q&A

Bang Liu
Email: bang.liu@umontreal.ca
Homepage: http://www-labs.iro.umontreal.ca/~liubang/
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