
Natural Language Processing
with Deep Learning

IFT6289, Winter 2022

Lecture 15: Constituency Parsing
Bang Liu

Lecture outline2

1. Principle of Compositionality
2. Context Free Grammar
3. CKY Parsing
4. Parsing by TreeRNNs
5. Parsing by Pre-trained LM

Compositionality

Compositionality

4 https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

5 https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

๏How can we interpret the meaning of larger phrases?

 The snowboarder is leaping over a mogul
 A person on a snowboard jumps into the air

๏People interpret the meaning of larger text units – entities, descriptive terms,
facts, arguments, stories – by semantic composition of smaller elements

Semantic Interpretation of Language6

7 https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

The Nature of Language

๏ Natural language is flexible, compositional, hierarchical

8

Context Free
Grammar

Can we define a program that generates all English
sentences?

10

CS447: Natural Language Processing (J. Hockenmaier)

Can we define a program that
generates all English sentences?

The number of sentences is infinite.
But we need our program to be finite.

�23

11

CS447: Natural Language Processing (J. Hockenmaier)

Overgeneration

Undergeneration

John saw Mary.
I ate sushi with tuna.

I ate the cake that John had  
made for me yesterday

I want you to go there.

John made some cake.

English

Did you go there?

.....

John Mary saw.

 with tuna sushi ate I.

Did you went there?

....

�24

Basic sentence structure12

CS447: Natural Language Processing (J. Hockenmaier)

Noun
(Subject) Verb

(Head)
Noun
(Object)

I eat sushi.

Basic sentence structure

�25

This is a dependency graph13

CS447: Natural Language Processing (J. Hockenmaier)

This is a dependency graph:

I eat sushi.

sbj obj

eat

sushiI

sbj obj

�26

Language is recursive14

CS447: Natural Language Processing (J. Hockenmaier)

Language is recursive

the ball
the big ball

the big, red ball
the big, red, heavy ball

....

Adjectives can modify nouns.
The number of modifiers (aka adjuncts)  
a word can have is (in theory) unlimited.

�31

Recursion can be more complex15

CS447: Natural Language Processing (J. Hockenmaier)

Recursion can be
more complex

the ball
the ball in the garden

the ball in the garden behind the house
the ball in the garden behind the house next to the school

....

�33

What does this mean?16

CS447: Natural Language Processing (J. Hockenmaier)

What does this mean?

the ball in the garden behind the house

�35

There is an
attachment
ambiguity

What is the structure of a sentence?17

CS447: Natural Language Processing (J. Hockenmaier)

 [] [] [] I eat sushi with tuna

What is the structure
 of a sentence?
Sentence structure is hierarchical:

A sentence consists of words (I, eat, sushi, with, tuna)  
..which form phrases or constituents: “sushi with tuna”  

Sentence structure defines dependencies  
between words or phrases:

�37

 []

Context-free grammars (CFGs) capture recursion18

CS447: Natural Language Processing (J. Hockenmaier)

Context-free grammars (CFGs)
capture recursion

Language has complex constituents
(“the garden behind the house”)  

Syntactically, these constituents behave  
just like simple ones.

(“behind the house” can always be omitted) 

CFGs define nonterminal categories  
to capture equivalent constituents.

�39

Context-free grammars19

CS447: Natural Language Processing (J. Hockenmaier)

Context-free grammars
A CFG is a 4-tuple 〈N, Σ, R, S〉 consisting of:

A set of nonterminals N  
(e.g. N = {S, NP, VP, PP, Noun, Verb,})  

A set of terminals Σ 
(e.g. Σ = {I, you, he, eat, drink, sushi, ball, })  

A set of rules R  
R ⊆ {A → β with left-hand-side (LHS) A ∈ N  
 and right-hand-side (RHS) β ∈ (N ∪ Σ)* }
 
A start symbol S ∈ N

�40

An example20

CS447: Natural Language Processing (J. Hockenmaier)

An example
DT → {the, a}
N → {ball, garden, house, sushi }
P → {in, behind, with}
NP → DT N
NP → NP PP
PP → P NP

N: noun
P: preposition
NP: “noun phrase”
PP: “prepositional phrase”

�41

An example21

CS447: Natural Language Processing (J. Hockenmaier)

An example
DT → {the, a}
N → {ball, garden, house, sushi }
P → {in, behind, with}
NP → DT N
NP → NP PP
PP → P NP

N: noun
P: preposition
NP: “noun phrase”
PP: “prepositional phrase”

�41

DT: Determiner

lexicon

other
rules

terminal symbols

definitions
of

non-terminals

Context-free or not?22

? ?

Answer23

Context-Free Not Context-Free

CFGs define parse trees24

CS447: Natural Language Processing (J. Hockenmaier)

CFGs define parse trees

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

N → {sushi, tuna}
P → {with}
V → {eat}
NP → N
NP → NP PP
PP → P NP
VP → V NP

�42

Two Most Common of Linguistic Tree Structures25

Dependency grammar26

CS447: Natural Language Processing (J. Hockenmaier)

Dependency grammar
DGs describe the structure of sentences as a  
directed acyclic graph.

The nodes of the graph are the words
The edges of the graph are the dependencies.

Typically, the graph is assumed to be a tree.

Note: the relationship between DG and CFGs:
If a CFG phrase structure tree is translated into DG,
the resulting dependency graph has no crossing edges.

�50

Constituents: heads and dependents27

CS447: Natural Language Processing (J. Hockenmaier)

Constituents:
Heads and dependents
There are different kinds of constituents:

Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly

Every phrase has a head:
Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly
The other parts are its dependents.
Dependents are either arguments or adjuncts

�51

Is string a constituent?α28

CS447: Natural Language Processing (J. Hockenmaier)

Is string α a constituent?

Substitution test:
Can α be replaced by a single word?  
He talks [there].

Movement test:
Can α be moved around in the sentence?  
[In class], he talks.

Answer test:
Can α be the answer to a question?  
Where does he talk? - [In class].

He talks [in class].

�52

Arguments are obligatory29

CS447: Natural Language Processing (J. Hockenmaier)

Arguments are obligatory
Words subcategorize for specific sets of arguments:

Transitive verbs (sbj + obj): [John] likes [Mary] 

All arguments have to be present:
*[John] likes. *likes [Mary].

No argument can be occupied multiple times:
*[John] [Peter] likes [Ann] [Mary]. 

Words can have multiple subcat frames:
Transitive eat (sbj + obj): [John] eats [sushi].
Intransitive eat (sbj): [John] eats. 

�53

Adjuncts are optional30

CS447: Natural Language Processing (J. Hockenmaier)

Adjuncts are optional
Adverbs, PPs and adjectives can be adjuncts:

Adverbs: John runs [fast].  
 a [very] heavy book.  
PPs: John runs [in the gym].
 the book [on the table]
Adjectives: a [heavy] book 

There can be an arbitrary number of adjuncts:
John saw Mary.
John saw Mary [yesterday].
John saw Mary [yesterday] [in town]
John saw Mary [yesterday] [in town] [during lunch]
[Perhaps] John saw Mary [yesterday] [in town] [during lunch]

�54

CS447: Natural Language Processing (J. Hockenmaier)

A context-free grammar
for a fragment of
English

�55

Noun phrases (NPs)32

CS447: Natural Language Processing (J. Hockenmaier)

Noun phrases (NPs)
Simple NPs:
[He] sleeps. (pronoun)
[John] sleeps. (proper name)
[A student] sleeps. (determiner + noun)

Complex NPs:
[A tall student] sleeps. (det + adj + noun)
[The student in the back] sleeps. (NP + PP)
[The student who likes MTV] sleeps. (NP + Relative Clause)

�56

The NP fragment33

CS447: Natural Language Processing (J. Hockenmaier)

The NP fragment
NP → Pronoun
NP → ProperName  
NP → Det Noun

Det → {a, the, every}
Pronoun → {he, she,...}
ProperName → {John, Mary,...}
Noun → AdjP Noun  
Noun → N
NP → NP PP
NP → NP RelClause

�57

Adjective phrases (AdjP) and prepositional phrases (PP)34

CS447: Natural Language Processing (J. Hockenmaier)

Adjective phrases (AdjP) and
prepositional phrases (PP)
AdjP → Adj
AdjP → Adv AdjP
Adj → {big, small, red,...}
Adv → {very, really,...} 

PP → P NP
P → {with, in, above,...} 

�58

The verb phrase (VP)35

CS447: Natural Language Processing (J. Hockenmaier)

The verb phrase (VP)
He [eats].
He [eats sushi].
He [gives John sushi].
He [eats sushi with chopsticks].

VP → V
VP → V NP
VP → V NP PP
VP → VP PP

V → {eats, sleeps gives,...}

�59

Sentences36

CS447: Natural Language Processing (J. Hockenmaier)

Sentences

[He eats sushi].
[Sometimes, he eats sushi].
[In Japan, he eats sushi].
 
S → NP VP
S → AdvP S
S → PP S

He says [he eats sushi].
VP → Vcomp S
Vcomp → {says, think, believes}

�61

Coordination37

CS447: Natural Language Processing (J. Hockenmaier)

Coordination
[He eats sushi] and [she drinks tea]
[John] and [Mary] eat sushi.
He [eats sushi] and [drinks tea]
 
S → S conj S
NP → NP conj NP
VP → VP conj VP

He says [he eats sushi].
VP → Vcomp S
Vcomp → {says, think, believes}

�65

Relative clauses38

CS447: Natural Language Processing (J. Hockenmaier)

Relative clauses
Relative clauses modify a noun phrase:
the girl [that eats sushi]

Relative clauses lack a noun phrase, which is
understood to be filled by the NP they modify:
‘the girl that eats sushi’ implies ‘the girl eats sushi’ 

There are subject and object relative clauses:
subject: ‘the girl that eats sushi’
object: ‘the sushi that the girl eats’

�66

Yes/No questions39

CS447: Natural Language Processing (J. Hockenmaier)

Yes/No questions
Yes/no questions consist of an auxiliary, a subject
and an (untensed) verb phrase: 

does she eat sushi?
have you eaten sushi?  

YesNoQ → Aux NP VPinf
YesNoQ → Aux NP VPpastPart

�67

Wh-questions40

CS447: Natural Language Processing (J. Hockenmaier)

Wh-questions
Subject wh-questions consist of an wh-word, an
auxiliary and an (untensed) verb phrase: 

Who has eaten the sushi?  

Object wh-questions consist of an wh-word, an
auxiliary, an NP and an (untensed) verb phrase: 

What does Mary eat?  
 
 

�68

More Details41

https://web.stanford.edu/~jurafsky/slp3/12.pdf

https://web.stanford.edu/~jurafsky/slp3/12.pdf

CKY Parsing
Algorithm

Constituency Parsing43

๏Syntactic parsing is the task of assigning a syntactic structure to a sentence.
๏Constituency parsing assigns constituency structures, those assigned by

context-free grammars.
๏Parse trees can be used in applications such as grammar checking, semantic

analysis, applications like question answering, etc.

I shot an elephant in my pajamas

Ambiguity44

๏Ambiguity is the most serious problem faced by syntactic parsers.
๏Structural ambiguity occurs when the grammar can assign more than one

parse to a sentence.

Cocke-Kasami-Younger (CKY) Parsing45

CS447 Natural Language Processing

CKY chart parsing algorithm
Bottom-up parsing:

start with the words
Dynamic programming:

save the results in a table/chart
re-use these results in finding larger constituents 

Complexity: O(n3|G|)
n: length of string, |G|: size of grammar)

Presumes a CFG in Chomsky Normal Form:
Rules are all either A → B C or A → a  
(with A,B,C nonterminals and a a terminal)

�13

46

CS447 Natural Language Processing

we eat sushiwe eat

eat sushi

sushi

eat

we

S → NP VP
VP → V NP
V → eat
NP → we
NP → sushi

We eat sushi

The CKY parsing algorithm

SNP

V

NP

VP

�14

To recover the
parse tree, each

entry needs  
pairs of

backpointers.

CKY algorithm47

CS447 Natural Language Processing

CKY algorithm
1. Create the chart

(an n×n upper triangular matrix for an sentence with n words)
– Each cell chart[i][j] corresponds to the substring w(i)…w(j)

2. Initialize the chart (fill the diagonal cells chart[i][i]):
For all rules X → w(i), add an entry X to chart[i][i]

3. Fill in the chart:
Fill in all cells chart[i][i+1], then chart[i][i+2], …, 
until you reach chart[1][n] (the top right corner of the chart)
– To fill chart[i][j], consider all binary splits w(i)…w(k)|w(k+1)…w(j)

– If the grammar has a rule X → YZ, chart[i][k] contains a Y
and chart[k+1][j] contains a Z, add an X to chart[i][j] with two
backpointers to the Y in chart[i][k] and the Z in chart[k+1][j]

4. Extract the parse trees from the S in chart[1][n].

�15

CKY: filling the chart48

CS447 Natural Language Processing

CKY: filling the chart

�16

w
1

... ... wi ... w
n w

1...

 ..
.wi
...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi
...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi
...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi
...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi
...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi
...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi
...
w
n

Converting a Generic CFG into CNF49

๏The CKY algorithm requires grammars to first be in Chomsky Normal Form
(CNF).

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Indexing Scheme50

0 Book 1 that 2 flight 3

fenceposts

๏With grammar in CNF, each non-terminal node have exactly two daughters
๏Use a (n+1) * (n+1) matrix to encode the structure of a tree
๏ [i, j] represents a constituent between fencepost i and j

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

A Completed Parse Table51

๏Proceed in a bottom-up
fashion

๏This scheme guarantees
that at each point in time
we have all the
information we need (to
the left, since all the
columns to the left have
already been filled, and
below since we’re filling
bottom to top).

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Fill the [i, j]-th Cell in the CKY Table52

๏Since each non-terminal entry in
our table has two daughters in the
parse, it follows that for each
constituent represented by an
entry [i, j], there must be a position
in the input, k, where it can be split
into two parts such that i < k < j.

๏Given such a position k, the first
constituent [i,k] must lie to the left
of entry [i, j] somewhere along row
i, and the second entry [k, j] must
lie beneath it, along column j.

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Fill Column 553

๏Each non-terminal is paired with pointers to the table entries from which it was derived
๏Permit multiple versions of the same non-terminals to be entered into the table

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Fill Column 554

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Fill Column 555

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Fill Column 556

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Fill Column 557

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Evaluating Parsers58

https://web.stanford.edu/~jurafsky/slp3/13.pdf

๏The PARSEVAL metrics: measures how much the constituents in the hypothesis
parse tree look like the constituents in a hand-labeled, reference parse.

total

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Penn Treebank59

https://web.stanford.edu/~jurafsky/slp3/13.pdf

๏Treebank: a syntactically annotated corpus where every sentence in the collection
is paired with a corresponding parse tree.

๏A wide variety of treebanks have been created.
๏The Penn Treebank project has produced treebanks from the Brown, Switchboard,

ATIS, and Wall Street Journal corpora of English, as well as treebanks in Arabic and
Chinese.

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Penn Treebank60

https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Span-Based Neural Constituency Parsing61

๏CKY parsing does great at enumerating all the possible parse trees for a
sentence

๏But it doesn’t tell us which parse is the correct one!
๏That is, it doesn’t disambiguate among the possible parses
๏To solve the disambiguation problem we’ll use a simple neural extension of the

CKY algorithm.
๏The intuition of such parsing algorithms (often called span-based constituency

parsing, or neural CKY), is to train a neural classifier to assign a score to each
constituent, and then use a modified version of CKY to combine these constituent
scores to find the best-scoring parse tree.

Parsing by
TreeRNN

Building on Word Vector Space Models63
2. Building on Word Vector Space Models

x2

x10 1 2 3 4 5 6 7 8 9 10

5

4

3

2

1
Monday

9
2

Tuesday 9.5
1.5

By mapping them into the same vector space!

1
5

1.1
4

the country of my birth
the place where I was born

How can we represent the meaning of longer phrases?

France 2
2.5

Germany 1
3

12

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

How should we map phrases into a vector space?64

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

How should we map phrases into a vector space?

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

Use principle of compositionality
The meaning (vector) of a sentence
is determined by
(1) the meanings of its words and
(2) the rules that combine them.

Models in this section
can jointly learn parse
trees and compositional
vector representations

x2

x10 1 2 3 4 5 6 7 8 9 10

5

4

3

2

1

the country of my birth

the place where I was born

Monday

Tuesday

France
Germany

Socher, Manning, and Ng. ICML,
2011

13

Constituency Sentence Parsing: What we want65

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Constituency Sentence Parsing: What we want

9
1

5
3

8
5

9
1

4
3

NP
NP

PP

S

7
1

VP

The cat sat on the mat.14

Learn Structure and Representation66

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Learn Structure and Representation

NP
NP

PP

S

VP

5
2 3

3

8
3

5
4

7
3

The cat sat on the mat.

9
1

5
3

8
5

9
1

4
3

7
1

15

Recursive vs. recurrent neural networks67

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Recursive vs. recurrent neural networks

• Recursive neural nets
require a tree structure

• Recurrent neural nets
cannot capture phrases
without prefix context
and often capture too much
of last words in final vector

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

4.5
3.8

5.5
6.1

1
3.5

1
5

2.5
3.8

17

Recursive NNs for Structure Prediction68

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Recursive Neural Networks for Structure Prediction

on the mat.

9
1

4
3

3
3

8
3

8
5

3
3

Neural
Network

8
3

1.3

Inputs: two candidate children’s representations
Outputs:
1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.

8
5

18

Recursive Neural Network Definition69

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Recursive Neural Network Definition

score = UTp

p = tanh(W + b),

SameW parameters at all nodes
of the tree

8
5

3
3

Neural
Network

8
3

1.3score = = parent

c1 c2

c1
c2

19

Parsing a sentence with an RNN (greedily)70

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Parsing a sentence with an RNN (greedily)

Neural
Network

0.1
2
0

Neural
Network

0.4
1
0

Neural
Network

2.3
3
3

9
1

5
3

8
5

9
1

4
3

7
1

Neural
Network

3.1
5
2

Neural
Network

0.3
0
1

The cat sat on the mat.

20

Parsing a sentence71

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Parsing a sentence

9
1

5
3

5
2

Neural
Network

1.1
2
1

Neural
Network

0.1
2
0

Neural
Network

0.4
1
0

Neural
Network

2.3
3
3

5
3

8
5

9
1

4
3

7
1

The cat sat on the mat.

21

Parsing a sentence72

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Parsing a sentence

5
2

Neural
Network

1.1
2
1

Neural
Network

0.1
2
0

3
3

Neural
Network

3.6
8
3

9
1

5
3
5
3

8
5

9
1

4
3

7
1

The cat sat on the mat.

22

Parsing a sentence73

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Parsing a sentence

5
2

3
3

8
3

5
4

7
3

9
1

5
3
5
3

8
5

9
1

4
3

7
1

The cat sat on the mat.
23

Score of a tree74

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Max-Margin Framework - Details

• The score of a tree is computed by
the sum of the parsing decision
scores at each node:

• x is sentence; y is parse tree

8
5

3
3

RNN

8
31.3

24

Max-Margin Framework75

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

Max-Margin Framework - Details

• Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

• The loss penalizes all incorrect decisions

• Structure search for A(x) was greedy (join best nodes each time)
• Instead: Beam search with chart

25

Max-margin parsing: https://www.aclweb.org/anthology/W04-3201.pdf

Backpropagation Through Structure76

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/

3. Backpropagation Through Structure

Introduced by Goller & Küchler (1996) – old stuff!

Principally the same as general backpropagation

Calculations resulting from the recursion and tree structure:
1. Sum derivatives of W from all nodes (like RNN)
2. Split derivatives at each node (for tree)
3. Add error messages from parent + node itself

The second derivative in eq. 28 for output units is simply

@a(nl)
i

@W (nl�1)
ij

=
@

@W (nl�1)
ij

z(nl)
i =

@

@W (nl�1)
ij

⇣
W (nl�1)

i· a(nl�1)
⌘
= a(nl�1)

j . (46)

We adopt standard notation and introduce the error � related to an output unit:

@En

@W (nl�1)
ij

= (yi � ti)a
(nl�1)
j = �(nl)

i a(nl�1)
j . (47)

So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:

@E

@W (nl�2)
ij

=
X

n

@En

@a(nl)| {z }
�(nl)

@a(nl)

@W (nl�2)
ij

+ �W (nl�2)
ji . (48)

Now,

(�(nl))T
@a(nl)

@W (nl�2)
ij

= (�(nl))T
@z(nl)

@W (nl�2)
ij

(49)

= (�(nl))T
@

@W (nl�2)
ij

W (nl�1)a(nl�1) (50)

= (�(nl))T
@

@W (nl�2)
ij

W (nl�1)
·i a(nl�1)

i (51)

= (�(nl))TW (nl�1)
·i

@

@W (nl�2)
ij

a(nl�1)
i (52)

= (�(nl))TW (nl�1)
·i

@

@W (nl�2)
ij

f(z(nl�1)
i) (53)

= (�(nl))TW (nl�1)
·i

@

@W (nl�2)
ij

f(W (nl�2)
i· a(nl�2)) (54)

= (�(nl))TW (nl�1)
·i f 0(z(nl�1)

i)a(nl�2)
j (55)

=
⇣
(�(nl))TW (nl�1)

·i

⌘
f 0(z(nl�1)

i)a(nl�2)
j (56)

=

0

@
sl+1X

j=1

W (nl�1)
ji �(nl)

j)

1

A f 0(z(nl�1)
i)

| {z }

a(nl�2)
j (57)

= �(nl�1)
i a(nl�2)

j (58)

where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�(l) =
⇣
(W (l))T �(l+1)

⌘
� f 0(z(l)), (59)

7

where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:

@

@W (l)
ij

ER = a(l)j �(l+1)
i + �W (l)

ij (60)

(61)

Which in one simplified vector notation becomes:

@

@W (l)
ER = �(l+1)(a(l))T + �W (l). (62)

In summary, the backprop procedure consists of four steps:

1. Apply an input xn and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �(nl) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite de
Montreal, 2007.

8

29

Discussion: Simple TreeRNN77 Discussion: Simple TreeRNN
• Decent results with single layer TreeRNN

• Single weight matrix TreeRNN could capture some
phenomena but not adequate for more complex,
higher order composition and parsing long sentences

• There is no real interaction between the input words

• The composition function is the same
for all syntactic categories, punctuation, etc. W

c1 c2

p
Wscore s

35

TreeLSTM78 Version 5:
Improving Deep Learning Semantic
Representations using a TreeLSTM
[Tai et al., ACL 2015; also Zhu et al. ICML 2015]

Goals:
• Still trying to represent the meaning of a sentence as a location

in a (high-dimensional, continuous) vector space
• In a way that accurately handles semantic composition and

sentence meaning
• Generalizing the widely used chain-structured LSTM to trees

https://www.aclweb.org/anthology/P15-1150.pdf

Child-Sum Tree-LSTMs79

https://www.aclweb.org/anthology/P15-1150.pdf

Original LSTM Child-Sum Tree-LSTMs

N-ary Tree-LSTMs80

https://www.aclweb.org/anthology/P15-1150.pdf

Original LSTM

N-ary Tree-LSTMs

Parsing by
Pre-trained LM

82 https://web.stanford.edu/~jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Calculating Span Score83

https://web.stanford.edu/~jurafsky/slp3/13.pdf

๏Map each word encoding to two span encodings

๏Represent a span by the difference between its start and end fenceposts

๏Calculate span score by MLP

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Integrating Span Scores into a Parse84

https://web.stanford.edu/~jurafsky/slp3/13.pdf

๏A tree T is a set of spans

๏Score of T is the sum of its constituent
spans

๏Choose the final parse tree with the
maximum score

๏A variant the CKY algorithm to find the
full parse.

https://web.stanford.edu/~jurafsky/slp3/13.pdf

More details on span-based parsing85

https://web.stanford.edu/~jurafsky/slp3/13.pdf

๏Stern, M., Andreas, J., and Klein, D. (2017). A minimal span-based neural
constituency parser. ACL.

๏Gaddy, D., Stern, M., and Klein, D. (2018). What’s going on in neural
constituency parsers? an analysis. NAACL HLT

๏Kitaev, N. and Klein, D. (2018). Constituency parsing with a self-attentive
encoder. ACL.

๏Kitaev, N., Cao, S., and Klein, D. (2019). Multilingual constituency parsing with
self-attention and pre-training. ACL.

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Todo86

๏ Reading Assignment 9: Speech and Language Processing (3rd ed. draft),
Dan Jurafsky and James H. Martin, Chapter 12: Constituency Grammars Due:
April 10 23:59 pm, 2022

๏ Suggested Readings:
• Constituency Parsing with a Self-Attentive Encoder
• Chapter 13: Constituency Parsing
• The papers listed on the page “More details on span-based parsing”

https://web.stanford.edu/~jurafsky/slp3/12.pdf
https://arxiv.org/pdf/1805.01052.pdf
https://web.stanford.edu/~jurafsky/slp3/13.pdf

References87

1. Stanford CS224N, Winter 2019: https://web.stanford.edu/class/archive/cs/
cs224n/cs224n.1194/slides/cs224n-2019-lecture18-TreeRNNs.pdf

2. UIUC CS447, Fall 2018: https://courses.engr.illinois.edu/cs447/fa2018/Slides/
Lecture09.pdf

3. UIUC CS447, Fall 2018: https://courses.engr.illinois.edu/cs447/fa2018/Slides/
Lecture08.pdf

4. Speech and Language Processing (3rd ed. draft), Dan Jurafsky and James H.
Martin, Chapter 13: Constituency Parsing

5. Speech and Language Processing (3rd ed. draft), Dan Jurafsky and James H.
Martin, Chapter 12: Constituency Grammar

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture18-TreeRNNs.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture18-TreeRNNs.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture18-TreeRNNs.pdf
https://courses.engr.illinois.edu/cs447/fa2018/Slides/Lecture09.pdf
https://courses.engr.illinois.edu/cs447/fa2018/Slides/Lecture09.pdf
https://courses.engr.illinois.edu/cs447/fa2018/Slides/Lecture08.pdf
https://courses.engr.illinois.edu/cs447/fa2018/Slides/Lecture08.pdf
https://web.stanford.edu/~jurafsky/slp3/13.pdf
https://web.stanford.edu/~jurafsky/slp3/12.pdf

Thanks! Q&A
Bang Liu 
Email: bang.liu@umontreal.ca
Homepage: http://www-labs.iro.umontreal.ca/~liubang/

88

mailto:bang.liu@umontreal.ca
http://www-labs.iro.umontreal.ca/~liubang/

